Cocoon GenAI
Prepare your data, ready for GenAI ✨🎯
You
🙂 In which year did the Bronx experience the highest growth in its real estate index?
GenAI
😎 RAG from Cocoon: Putting the question in context using Cocoon's ER story...
- Description: City-wide indices reveal overall NYC real estate trends.
  Name: NYCOverallRealEstateIndices
  Type: Group
- Description: Borough-specific indices show varying real estate performance.
  Name: NYCBoroughRealEstateIndices
  Type: Group
- Description: Neighborhood indices highlight local real estate value shifts.
  Name: NYCHousingPriceIndices
  Type: Group
- Description: Detailed metrics expose nuanced market behavior (2010-2018).
  Name: NYCRealEstateMarketMetrics
  Type: Group
🤓 We've found the related relations: NYCBoroughRealEstateIndices, NYCRealEstateMarketMetrics

Story behind the relationships (oval for entity, box for relation, octagon for table group))

  1. [NYCOverallRealEstateIndices]: City-wide indices reveal overall NYC real estate trends.
  2. [NYCBoroughRealEstateIndices]: Borough-specific indices show varying real estate performance.
  3. [NYCHousingPriceIndices]: Neighborhood indices highlight local real estate value shifts.
  4. [NYCRealEstateMarketMetrics]: Detailed metrics expose nuanced market behavior (2010-2018).
%3 NYCOverallRealEstateIndices NYCOverallRealEstateIndices NYCBoroughRealEstateIndices NYCBoroughRealEstateIndices NYCHousingPriceIndices NYCHousingPriceIndices NYCRealEstateMarketMetrics NYCRealEstateMarketMetrics
Reasoning: The question is asking about the year when the Bronx experienced the highest growth in its real estate index. In the story, it is asking for specific information about one of New York City's boroughs (the Bronx) and its real estate performance over time. This requires data that focuses on borough-level real estate trends and includes historical information to identify the year of highest growth.
GenAI
😎 RAG from Cocoon: Checking out all the related tables Cocoon set up...
- partitons: The data for NYCRealEstateMarketMetrics is partitioned into 43 tables
  table_names:
  - stg_A1_totalInventory_All
  - stg_A3_medianAskingPrice_All
  - stg_A5_recordedSalesVolume_All
  - stg_A6_medianSalePrice_All
  - stg_A7_saleListRatio_All
  - stg_A8_priceCutShare_All
  - stg_A9_daysOnMarket_All
  - stg_B1_totalInventory_Condo
  - stg_B3_medianAskingPrice_Condo
  - stg_B5_recordedSalesVolume_Condo
  - stg_B6_medianSalePrice_Condo
  - stg_B7_saleListRatio_Condo
  - stg_B8_priceCutShare_Condo
  - stg_B9_daysOnMarket_Condo
  - stg_C1_totalInventory_Coop
  - stg_C3_medianAskingPrice_Coop
  - stg_C5_recordedSalesVolume_Coop
  - stg_C6_medianSalePrice_Coop
  - stg_C7_saleListRatio_Coop
  - stg_C8_priceCutShare_Coop
  - stg_C9_daysOnMarket_Coop
  - stg_D1_totalInventory_Sfr
  - stg_D3_medianAskingPrice_Sfr
  - stg_D5_recordedSalesVolume_Sfr
  - stg_D6_medianSalePrice_Sfr
  - stg_D7_saleListRatio_Sfr
  - stg_D8_priceCutShare_Sfr
  - stg_D9_daysOnMarket_Sfr
  - stg_E1_rentalInventory_All
  - stg_E2_medianAskingRent_All
  - stg_E3_discountShare_All
  - stg_F1_rentalInventory_Studio
  - stg_F2_medianAskingRent_Studio
  - stg_F3_discountShare_Studio
  - stg_G1_rentalInventory_OneBd
  - stg_G2_medianAskingRent_OneBd
  - stg_G3_discountShare_OneBd
  - stg_H1_rentalInventory_TwoBd
  - stg_H2_medianAskingRent_TwoBd
  - stg_H3_discountShare_TwoBd
  - stg_I1_rentalInventory_ThreePlusBd
  - stg_I2_medianAskingRent_ThreePlusBd
  - stg_I3_discountShare_ThreePlusBd
  table_desc: The table shows real estate data for New York City. It includes metrics
    like inventory (the number of rental listings), prices cut (the exact middle price
    cut as a percentage of total asking price), Sale-to-List Price Ratio (the final
    recorded sales price of a home divided by its initial asking price), etc. Data
    is split by property type (all, condo, coop, SFR). It covers rental data too.
    Metrics are tracked monthly from 2010 to 2018. Areas are divided into Manhattan
    submarkets.
  attributes:
  - Area
  - Borough
  - AreaType
  - date_2010_01
  - date_2010_02
  - date_2010_03
  - date_2010_04
  - date_2010_05
  - date_2010_06
  - date_2010_07
  - date_2010_08
  - date_2010_09
  - date_2010_10
  - date_2010_11
  - date_2010_12
  - date_2011_01
  - date_2011_02
  - date_2011_03
  - date_2011_04
  - date_2011_05
  - date_2011_06
  - date_2011_07
  - date_2011_08
  - date_2011_09
  - date_2011_10
  - date_2011_11
  - date_2011_12
  - date_2012_01
  - date_2012_02
  - date_2012_03
  - date_2012_04
  - date_2012_05
  - date_2012_06
  - date_2012_07
  - date_2012_08
  - date_2012_09
  - date_2012_10
  - date_2012_11
  - date_2012_12
  - date_2013_01
  - date_2013_02
  - date_2013_03
  - date_2013_04
  - date_2013_05
  - date_2013_06
  - date_2013_07
  - date_2013_08
  - date_2013_09
  - date_2013_10
  - date_2013_11
  - date_2013_12
  - date_2014_01
  - date_2014_02
  - date_2014_03
  - date_2014_04
  - date_2014_05
  - date_2014_06
  - date_2014_07
  - date_2014_08
  - date_2014_09
  - date_2014_10
  - date_2014_11
  - date_2014_12
  - date_2015_01
  - date_2015_02
  - date_2015_03
  - date_2015_04
  - date_2015_05
  - date_2015_06
  - date_2015_07
  - date_2015_08
  - date_2015_09
  - date_2015_10
  - date_2015_11
  - date_2015_12
  - date_2016_01
  - date_2016_02
  - date_2016_03
  - date_2016_04
  - date_2016_05
  - date_2016_06
  - date_2016_07
  - date_2016_08
  - date_2016_09
  - date_2016_10
  - date_2016_11
  - date_2016_12
  - date_2017_01
  - date_2017_02
  - date_2017_03
  - date_2017_04
  - date_2017_05
  - date_2017_06
  - date_2017_07
  - date_2017_08
  - date_2017_09
  - date_2017_10
  - date_2017_11
  - date_2017_12
  - date_2018_01
  - date_2018_02
  - date_2018_03
  - date_2018_04
  - date_2018_05
  - date_2018_06
  - date_2018_07
  - date_2018_08
  - date_2018_09
- partitons: The data for BrooklynRealEstateIndices is partitioned into 2 tables
  table_names:
  - stg_priceIndex_condos_co_ops_homes_Brooklyn_2018_09
  - stg_rentIndex_condos_co_ops_homes_Brooklyn_2018_09
  table_desc: The table shows price indices and rent indices for Brooklyn. Each index
    uses a repeat-sales method of comparing the sales prices of the same properties
    since January 1995 in Manhattan and January 2005 in Brooklyn and Queens. It covers
    condos, co-ops, and homes. Data is split into quintiles. Monthly and yearly changes
    are included. The table starts from 1995 but has missing early data. It likely
    continues to 2018.
  attributes:
  - date_
  - brooklyn_price_index
  - brooklyn_q1_price_index
  - brooklyn_q2_price_index
  - brooklyn_q3_price_index
  - brooklyn_q4_price_index
  - brooklyn_q5_price_index
  - brooklyn_price_index_mom
  - brooklyn_q1_price_index_mom
  - brooklyn_q2_price_index_mom
  - brooklyn_q3_price_index_mom
  - brooklyn_q4_price_index_mom
  - brooklyn_q5_price_index_mom
  - brooklyn_price_index_yoy
  - brooklyn_q1_price_index_yoy
  - brooklyn_q2_price_index_yoy
  - brooklyn_q3_price_index_yoy
  - brooklyn_q4_price_index_yoy
  - brooklyn_q5_price_index_yoy
- partitons: The data for QueensRealEstateIndices is partitioned into 2 tables
  table_names:
  - stg_priceIndex_condos_co_ops_homes_Queens_2018_09
  - stg_rentIndex_condos_co_ops_homes_Queens_2018_09
  table_desc: The table shows price indices for Queens real estate. It includes data
    for all properties and five quintiles. The table has monthly and yearly changes.
    It covers condos, co-ops, and homes. The data starts from 1995. The rent index
    partition likely has a similar structure.
  attributes:
  - date_
  - queens_all_index
  - queens_q1_index
  - queens_q2_index
  - queens_q3_index
  - queens_q4_index
  - queens_q5_index
  - queens_all_mom_change
  - queens_q1_mom_change
  - queens_q2_mom_change
  - queens_q3_mom_change
  - queens_q4_mom_change
  - queens_q5_mom_change
  - queens_all_yoy_change
  - queens_q1_yoy_change
  - queens_q2_yoy_change
  - queens_q3_yoy_change
  - queens_q4_yoy_change
  - queens_q5_yoy_change
- partitons: The data for ManhattanRealEstateIndices2018 is partitioned into 2 tables
  table_names:
  - stg_priceIndex_condos_co_ops_homes_Manhattan_2018_09
  - stg_rentIndex_condos_co_ops_homes_Manhattan_2018_09
  table_desc: The table shows price indices for Manhattan properties. Each index uses
    a repeat-sales method of comparing the sales prices of the same properties since
    January 1995 in Manhattan and January 2005. Values are given for different dates.
    Monthly and yearly changes are calculated. The rent index partition likely has
    a similar structure for rental prices.
  attributes:
  - date_
  - manhattan_price_index
  - manhattan_q1_price_index
  - manhattan_q2_price_index
  - manhattan_q3_price_index
  - manhattan_q4_price_index
  - manhattan_q5_price_index
  - manhattan_price_index_mom
  - manhattan_q1_price_index_mom
  - manhattan_q2_price_index_mom
  - manhattan_q3_price_index_mom
  - manhattan_q4_price_index_mom
  - manhattan_q5_price_index_mom
  - manhattan_price_index_yoy
  - manhattan_q1_price_index_yoy
  - manhattan_q2_price_index_yoy
  - manhattan_q3_price_index_yoy
  - manhattan_q4_price_index_yoy
  - manhattan_q5_price_index_yoy
🤔 We couldn't find any related tables.
🧠 Explanation: The available data is not sufficient to directly answer the question "In which year did the Bronx experience the highest growth in its real estate index?". The main issue is that there is no specific table or column for the Bronx real estate index. The data provided includes detailed information for Manhattan, Brooklyn, and Queens, but the Bronx is not explicitly mentioned in any of the table descriptions or attributes. The closest we have is the NYCRealEstateMarketMetrics table, which includes a 'Borough' attribute. This table might contain data for the Bronx, but it doesn't provide a comprehensive real estate index. Instead, it offers various metrics like median asking price, sale price, and inventory, which could be used to construct a rudimentary index. However, this would require significant data manipulation and might not accurately represent a true real estate index. Moreover, the NYCRealEstateMarketMetrics table only covers data from 2010 to 2018, which limits the historical scope of the analysis. Given these limitations, we cannot provide a reliable answer to the question with the current data structure.
New chat results may be available. Refresh to check.